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A genuine small sample theory for post-stratification is developed in
this paper. This includes the definition of a ratio estimator of the popula-
tion mean Y, the derivation of its bias and its exact variance and a discussion
of variance estimation. The estimator has both a within strata component of
variance which is comparable with that obtained in proportional allocation
stratified sampling and a between strata component of variance which will
tend to zero as the overall sample size becomes large. Certain optimality
properties of the estimator are obtained. The generalization of post-strati-
fication from the simple random sampling to post-stratification used in conjunction

with stratification and multi-stage designs is discussed.
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"An Exact Small Sample Theory for Post-Stratification"

by
D. C. Doss*, H. 0. Hartley+ and G. R. Somayaju1u$

1. Introduction

As is well known, strata are defined as nonoverlapping and exhaustive
subsets of the units of a population with the following properties:

(a) The total number of units Nh in stratum h of the population

is known,

(b) It is possible to identify in advance of sampling the stratum

h to which each unit belongs and prescribed sample size§

" > 1 are drawn from stratum h. Y
"Post strata" differ from strata in the sense that condition (b) is no
longer satisfied. However, it is assumed that after sampling it is
possible to identify for each elementary unit the post-stratum, h, to
which it belongs.

The literature on post-stratification is almost exclusively confined
to the case of a simple random saﬁple of size n drawn from the population.
If we define by " the number of units which "happen to fall" into a post-
stratum h then the " become random variables following a hypergeometric
distribution. It is well known that the literature on post-stratification

is essentially confined to a situation where the probability that "= 0

*D. C. Doss, University of Alabama in Huntsville
tH. 0. Hartley, Institute of Statistics, Texas A&M University
$6. R. Somayajulu now at Osmania Un{versity, Hyderabad, INDIA. The

initial stages of this work formed part of the dissertation by G. R. S.
prepared at Texas A&M University under the direction of Dr. H. 0. Hartley.
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can be assumed to be negligible. Accordingly, the estimator of the

population mean Y considered is of the form
T, (1.1)

where the Nh/N are the known post-strata proportions in the population and
y; is the ordinary sample mean of the units falling into post-stratum h
provided N, 2 1. The definition of y; for the case n, = 0 varies. As is
well known, if the probability that n, = 0 is negligibly small the above
estimator is approximately unbiased and has a variance which is approxi-
mately equal to that of a stratified estimator for proportional allocations.

If the above approximations are accepted it would follow that all the
benefits derivable from stratification and proportional allocation can be
attained by the above device of post-stratification. Unfortunately,
experience with post-stratification when the sample size n is comparatively
small and the number of strata is comparatively large is distinctly
disappointing.

It is therefore the purpose of this paper to develop a genuine small
sample theory for post-stratification. This will include the precise
definition of the estimator of Y, the derivation of its bias and its exact
variance and a discussion of variance estimation. It is not surprising
that our findings will show that our post-stratified estimator will have
both a within strata component of variance which is comparable with that
obtained in proportional allocation stratified sampling but also a between
strata component of variance which will tend to 0 as the overall sample

size n becomes large to an order which is O(n'l). The derivation of our
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compact and exact variance formulas for both components of variance
enables us to derive certain optimality properties of our estimator
together with recommendations for sampling strategies.

In the last section we also discuss the generalization of post-
stratification for survey designs that are more realistic than a simple
random sample. These include post-stratification used in conjunction
with stratification and multi-stage designs. However, these generaliza-

tions are only discussed in generality and not spelled out in detail.




2. A Ratio Estimator

Throughout this paper, we consider only a simple random sample of
size n from a population of size N with L strata (L > 2). However,
generalizations of the design are considered in section 6. Defining the
"indicator variables"

1 if at least one unit of the sample of size n
2 is in stratum h

a, (2.1)
0 otherwise,
we start with an unbiased estimator of Y of the form
y = zayPy, /E(a) (2.2)

where Ph = Nh/N, E(ah) =1 -(N;Nh)/(:)and the summation extends over

all strata. When a, = 0, Yp, can be defined arbitrarily as a constant,

say, Yh’ the population mean of stratum h, since the corresponding term
in (2.2) is zero. The unhiacedness of thic ectimater follows from

E(y) = E(g(i)) = E(zahPth/E(ah))= zPth =Y (2.3)
where E is the conditional expectation given (nl,...,nL) and E is the
expectation over (nl,...,nL). Similarly, we define variances ¥ and g and
covariances C?v and Cgv. Note a similarity of our estimator to the welle
known Horvitz-Thompson estimator of Y in a random sample with unequa
probabilities of selection.

A serious drawback of y is that its variance depends on the origin
of the y values. To demonstrate this we consider a translation of each
y toy + c where ¢ is an arbitrary constant and the estimator of Y + ¢
becomes

(y +7c) = za Py (¥, + )/E(a,) = § + & (2.4)
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where x = Za P _x /E(ah) = ZahPh/E(a

hPh*h (2.5)

h

; = 1 for all population units. Incidentally, x is

an unbiased estimator of ¥ = 1. Now clearly we have for the variance

and the variable Xn

V(y +c) = V(7) + cV(X) + 2cCov(y,X) (2.6)
and it is obvious that v(yfrvc) can be made arbitrarily large by increasing
¢ sufficiently. This is due to the fact that x is not a constant.
In order to eliminate the dependence of the variance on the origin
of the y values we turn our attention to a ratio estimator of Y which is

defined by =
za Py, /E(a,)

R = (¥/X)X = y/x = za P /E(a,)

(2.7)

The variance of ﬁ is unaffected by translation of y values since from (2.2)
(y +c)/x = (/%) + c. - (2.8)

Now the ratio estimator (2.8) will in general be slightly biased.
However in the particular case where all strata proportions Ph are equal,
our ratio estimator is shown to be unbiased in Appendix II. In other
cases the bias of R as an estimator of Y is of the order of magnitude
O(P;Q:) or O(Pth+l) where Qh =1 - Ph (see Appendix I). Therefore, even
for a moderate sample size n the bias is negligible provided the Ph are
greater than or equal to cn”'.

If the number of strata is large and all Ph are small, while n is
moderate, we show in Appendix I that the bias is of order O(n‘L'z) or
O(nzL'a). Once again the bias is negligible. The bias can be exactly

evaluated for a small number of strata by direct computation.
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3. The Exact Variance of the Ratio Estimator

There are two components of variance resulting from the well-known
relation

VR) = V(ER)) + EY(R) (3.1)

where again E and g are conditional expectations and variances given a set

of " and E, Y are expectations and variances over the U The terms

¥(§(R)) and E(g(R)) are called the between strata component and the within

strata component of variance of R and denoted as V(R)B and V(R)H respectively.
First we derive the between strata component in a compact form which

requires recasting ﬁ in a simple form as

-~

R = zbhyh (3.2)
a P /E(a,)
where bh = E h h (3.3)
kE‘.akPk/E(ak)

Since zbh = 1, we obtain for any fixed h
£ Cov(b,,,b, ) =E( £ b_,b ) -E( £ b_,)E(b,)
' h'*"h h' h'"h h'#h h h

h'#h #h

EC(1 - b )by} - EQ - b,)E(b,)  (3.4)

-V(bh).
Since
g(é) = tb E(y,) = b, ¥, (3.5)

we find that, by virtue of (3.4)
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VR = Y(ER) = Ty + L coviby b)Y,

L L L
"2 V2 v v
1/2{ I v(b Y2 + EV(b )Yh. +2 I Cov(bh.,bh)Yh.Yh}

h=11 h=11 h'#h=1 1
" (3.6)
e L {E(bh')E(bh) = E(bh'bh)} v 12
B > Yh‘ - Yh)
h'#h=1
The within strata component of variance R is given by
R). = R)) = iy, )) = %
V(R)y = EQYR)) = E(zbRV(y,)) = ECzb2((1/n) - (1/m)sp)
(3.7)

ZE'(bﬁ/nh)E(ah)S7 rE(bz)Sz/N

> 1 and S2 is

where E' stands for the conditional expectation given ", 2 h

the population mean square of stratum h, i.e.

N
h
5f = 121(’hi - 7hf9(Nh - 1). (3.8)

In the particular case where all Ph are equal, the components of
variance of R reduce (see Appendix II) to the very simple forms

V(R)g = (E(1/v) - (1/L))SR (3.9)

and V(ﬁ)“ = (E'(1/v2ny)E(a,) - E(1/62)(L/N))2SE (3.10)




where v = the number of strata represented in the sanple,

5§ = (M - L)AL - 1),

v ( )




4. The Efficiency of R

In order to reduce the variance of the estimator of Y stratified
sampling is employed in practice with different allocation schemes
of the sample. In particular whe: the population strata means differ
considerably from each other and the patterns of strata variances Sﬁ
differ for different content items, the scheme of proportional
allocation is used to eliminate this variability. But, if stratified
sampling is not possible because of (b), then it is of interest to
find an estimator of Y based on post-stratification which would
minimize the between strata variation and at the same time would not
increase the within strata variation "unduly".

A reasonable class of unbiased estimators of Y based on post-
stratification that can be computed from the sample is given by
JE(g(n

zg(n, )P (4.1)

hyh h)
where g(nh) is any mathematical function defined for all values of ny

and is such that g(0) = 0 and E(g(nh)) # 0. This ctass clearly includes
the sample mean y by letting g(nh) =n. A1l estimators of (4.1) with

the exception of y suffer from the same drawback as 9 defined by (2.1),
that is, the increase in variance through traﬁs]ation. Hence the logical
step to eliminate this effect is to consider ratio estimators analogous

to (2.7).

It is shown in Appendix II that the ratio estimators obtained from
(4.1) are unbiased and our estimator R given by (2.6) minimizes the
between strata component of variance in this generalized class of
estimators (4.1) when all strata sizes are equal. In the case where all
strata sizes are not equal, there exists no ratio estimator that minimizes
the between strata component of variance if 9("h) is required not to

depend on the population strata means or strata variances.
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The between strata component of variance of ﬁ, V(ﬁ)B, is always
smaller than that of y and (as is seen in Appendix I) V(Ii)B is of an
exponential order of magnitude O(Pﬁqz) or O(PhQa+l) and approaches zero
much more rapidly than V(Y)B which is of the order 0(n”').

When the number of strata L is large, all Ph are small, and n is
moderately large, it is seen in Appendix I that an approximate V(fz)B is
of order O(nL'z) or 0(n2L'3). This implies that in a situation where
the usual estimator (1.1) is at its worst, R has a negligible between

strata component of variance.

Turning now our attention to the within strata component of variance

we consider an approximation to V(ﬁ)N since the exact variance is
analytically intractable. In Appendix I we show that to terms of order
0(n"') we have that

V(R)w = yP

2 - ~2/n2(1 - oM
Lo2/n(1 - a) + 2Qa2/n201 - Q) (a.2)

which clearly approaches the variance of the estimator used in strati-

fication with proportional allocation for large n, i.e.

v(ﬁ)w 2 5(P a2/n). (4.3)

The asymptotic result (4.3) is also correct for large L if all Ph are
small and n is moderately large.

The relative efficiency of ﬁ as compared with the estimator of Y
employed in stratified sampling with proportional allocation approaches
asymptotically 1 if either n is large or L is large (so that all Ph are

small) while n is moderately large.
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5. The Estimation of the Variance of R

An unbiased estimator of V(é) is given by

2 L {E(b, ,)E(b,) - E(b, ,b, )}
VIR) =t apa — 25(2 3 y) P
h'#h=1 h%h'
(5.1)
LZ L22
+ I b2d s - I bfsZ/N
hey Bohoh " 2 Ph>h Th

- . . g ) b7 2 -
where thh' is an unbiased estimator of (Yh Yh.) given ng # 0 and

N # 0. We may use the estimator

ton = 33 Ly = Y )2 = (sf/ng) = (sR/np )y (5.2)
n

h
; ¥ e -
when we define s? iE](yhi yh)/(nh 1) (5.3)

and Sﬁ. by replacing h by h' in (5.3). Finally in (5.1) we define di| by

0 if n, = 0
dh = (5.4)

Vn, if L » 1.

The computation of {(55 - 35.)2 - (sﬁ/nh) - (sﬁ./nh.)} in (5.2) is only
required if both " > 1 and N 2 1 since otherwise ahah. = 0. However,
the definitions of sﬁ and sﬁ. in (5.1) and (5.3) require that both ny, > 2
and Ny > 2. In case ", = 1 and/or Ny = 1 methods of estimating
variances from single units per stratum have to be employed (see e.g.
Hartley, Rao, and Kiefer (19 )).

If the number of strata is not small, then it becomes very tedious
to compute E(bh)E(bh.) - E(bh.bh) in which case an approximation is

provided in Appendix 1 equations (A-10) to (A-14).
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6. Post-stratification for More General Survey Designs
We confine ourselves here to a brief outline of the main general
theory of post-stratification for stratified multi-stage designs. We
shall utilize the theory of "Domain Estimation" (see e.g. Hartley (1959))
by identifying post strata with "domains of study".
Denote by Y5 the characteristic attached to the ith last stage
unit and by ?(yi) the standard unbiased estimator of the population
total of the Yi The estimator ?(yi) is a well defined linear function

of the ¥; in the sample. Define now the domain variables

¥; if unit i is in domain h
Wi = (6.1)
0 if unit i is not in domain h
1 if unit i is in domain h ( |
X, = 6.2
and h 0 if unit 1 is not in domain h

and consider the subset of samples for which at least one last stage unit
falls into domain h. Denote by

" Pr{at least one last stage unit in domain h}. (6.3)

For this subset of samples the estimate ?(hxi) of the number of units in
domain h will be greater than zero since §(hxi) is a linear function of
the n*3 with positive coefficients. Accordingly, we can for this subset
of samples compute the ratio estimate of the population domain mean in
the form

.0
W L (6.4)
Y(hxi)

which will have a "technical bias" given by

Blas,y = -Cov(hi.i(hxi))(-h/hn) (6.5)
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whereCov is a conditional covariance applicable to the above subset
of samples and hM is the total number of last stage units in domain h.
It is reasonable to assume that Cov(h},Q(hxi)) will be zero or small
since the estimate of the gggg_!glgg of the y characteristic (h§) is
unlikely to be correlated with the estimate of the number of units
Q(hxi) falling into domain h.

We finally turn to the post-stratified estimates of the population
mean and define in analogy to (2.2) the post-stratified estimates

~

y = zahPh(}h/Wh), X = za P, (1/m ) (6.6)

1 if at least one last stage unit
is in domain h
where a, = (6.7)
0 if there is not at least one last
stage unit in domain h.

Finally we define the double ratio estimator
R = y/x (6.8)
which isour post-stratified estimator of the population mean.

The main difficulty about using (6.6) and (6.8) is the computation
of the L defined by (6.3) which would require the knowledge of the
domain sizes in each last but one stage unit. However for many survey
designs it is possible to compute appfoximations to the T, 2s we shall
illustrate below:

Assume that the last stage units are sampled with equal probability
and without replacement and use the index j to denote the last but one
stage units. Denote by p(s) the probability that a sample s of last but

one stage units has been drawn by the specified survey design. Denote

ki W.M
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by mj the specified number of last stage units to be drawn from the jth

last but one stage unit if in s. Denote by Phj the proportion of last

stage units in the jth last but one stage unit which are in domain h

and by th =1 - Phj' Then (ignoring fpc's) the probability L is.given by
m, =1 -2p(s) n Qmi 1.0 (6.9) i
h S Jin s hJ h
where Qh is an average value of the th and m is an average value of
the total overall last stage sample size.
Improvements in the computation of the L and the spelling out

of the bias and variance of R will be left to subsequent communications.
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APPENDIX I

1. The order of magnitude of the bias and V(R)B as n + @

When the numerator of bh defined by (3.3) is written as

ahPh/E(ah) = Ph(l + eh) (A.1)
where
R {ah - E(ah)}/E(ah), (A.2)

we immediately observe, for any positive integer m, that
n
Q
L (A.3)
n h
l-QH

e = 1" Q-a)+(

where Qh =1 - Ph and E(ah) =] - Qﬁ under the assumption that the strata
sizes are sufficiently large for approximating the hypergeometric distribution

of n, by a binomial. Similarly the denominator of b, can be written as

h
L L
I aP/E(a)= L P(L+eg)=1+c¢ (A.4)
ol 3 i el k

where € =1 Pkek. It is not difficult to éee that

E(g) = 0, E(gp) = (-D"QR + qf" /1 - g™ < oD,

E(c) = 0. E(™ = ) e )E(IIfPrk rk) 0(TQ). (A.5)
¥ » FOE Kk Gk )~ 0(BQ). (A

r1+...+rlrm r1""’rL k=1

Supposing that |[E| < 1, we are able to expand bh in the form

b, =B (L+e)L+e)t
=P, {1+ (e, -€) + e - €€) + (ehez s B ) (A.6)
from which we obtain
E(by, - B) = B, (E(e? - e e) + E(epe - ) + ... (A.7)
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Since it can be shown that E(c™ - ehem-l) is of order of magnitude 0(P™Q"

or O(P:-1Q2+1), the bias in R is given by

EC byy) - ¥ -Z(E(bh) - Ph} Y, (A.8)
2 n n+l
which 1is of order O(Pth) or O(PhQh ) e

Using these results in (3.6) for computing the between strata component

of variance we obtain

E(b)E(, ) - E(byb,,) ~ 0(PRQP) or 0, Q). (4.9)

; We therefore conclude that V(i)B - O(PﬁQ:) or O(PhQ:+1).

; We thereby obtain a first approximation to V(i)B to order O(Pﬁqﬁ) or O(PhQ=+1)
by omitting the terms in g, €y Ek' with degree higher than 2 in the expansion
of

L 5 E{(eh -€) (eh, -€)}
= PP, {V(e) + Cov (e, ,€:) = Cov(e, ,€) - Cov(e, 1»€)}
(A.10)
where 3 5
L l-E(ak) 2 L E(akak, - E a, E a
V(e) = £ ———— P, + I PPy (A.11)
ki By kg E(s)E(a, ) -
E(a;,a,,) - E(a )E(a; ;)
Cov(eh, eh,) = E(ah)E(ah') (A.12)
1-E(a,) E(a,a, ) - E(a, )E(a,)
h - h 'k h k
COV(Eh, €) = '—E—(-a—l;s— Ph + k;.h E(ah)E(ak) Pk’ (A.13)
and
N-Nk)
Ba) =1 - —2— , (A.14)
G

n
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ey - e
E(a 8 \) - E(a )E(a,,) = N (A.15)
()
2. The order of magnitude of the bias, V(;()B and V(ﬁ)w vhen L + o, Ph +0

and n is moderately large.

Since it is not difficult to prove that the bias and V(R)B are of the same
order as before, we shall concentrate on V(R)B and V(R)w. Without going into
detail we can obtain a first approximation as follows:

VR) = V(y/x) = V(¥ - ¥ x) (A.16)

L V(ah)

TE?E;TTY Pﬁ (?: - ;}2

= I

h=1
e S SRR

+ z PP ,(Yy, -Y y E el ¢
h'ghe1 E@DEG@, ) "hh Yh h

L {E'(1/n) E(a,) - E(a,/N,)}
W e e de &l J, 1 (a.17)
h=1 {E(ah)}

Assuming as before that the strata sizes are sufficiently large for approximation

of the hypergeometric distribution by a multinomial, we can write

V(ay) = qp (1 - ), (A.18)

Cov(ay,a ,) = (1- P - Ph,)n - Q:Q:, (A.19)
and

E(a) = (1 - Q). (A.20)

We now consider cases where L is large, all Ph are small while n is
moderate. Omitting all the terms in Ph with higher degree than 2 in the

expansion of V(a,) and Cov(a, ,a, ) and E'(1/n, ) we obtain
h h*®h h

et
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:
E Va) EalP. -7 ~2nln - 13 P (A.21)
| 8 BT T2 h’ .
i Cov(ahsahi) £ -n Phph' (A-22)
and 2
E ' ° B PhQ: 2 n-l
i E (llnh) Wy — (Qh + 5 Ph) (A.23)
| (1 i Qh)
which on substituting in V(i) and omitting the finite population correction,
reduce after much simplification to the form
3 5 P.Y L P.Y.
V(R).nZPh[hh -ZPhh—h;]Z
h=1 I~ Qh h=1 (1—Qh) |
4 =2 3 n-2 n-1 |
-1 . Th b L R
2 T =5 * L = Op° (A.24)
h (l-Qh) h=1 a- Qh)
We now infer that
~ -2 2 -3
V(R)B ~0(nL ") orO(n " L 7), (A.25)
and 2
aoe e Be GR -1
V(R)w = J —— +0(L) (A.26)
h=1
which follows from
gt a-ey™t 1-(-1)P, + {o=D)n-2) p2 e
= A.27)
2 a2 3 BV 7.2 (
(1-q) {1—(1—Ph) } n“Py {1~ 3 P} n°P
3. The order of magnitude of V(ﬁ)w as n +®
For large n it has been shown by Stephan (1945) that to terms of order
-2
n
Q
B G (A.28)
™ h nP
h
2 2
= PG Q o
Then V(R), &¢I -P DB 4+1.5 LR (A.29)
n(l—Qh) n 1—Qh
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APPENDIX II

An optimum property of R for a population with equal strata sizes

We shall establish that when all strata sizes are equal R is unbiased and
minimizes uniformly the between strata component variance of a generalized

class of unbiased ratio estimators

Z{g(nh)PhthE(s(nh))}

Rg ~ Tlatn,)¥, [EGGE )] U
where g(nh) is any function with g(0) = 0. First of all these ratio estimators
reduce to

Zgn)y
PREER s R

R8 5 g(nh) (A.31)

since all Ph are equal. Moreover, the random variables
gln,)

have the same expectations, variances and covariances. Since
I g(m,) g(n,)

l-i—g(—n:)-- Zw=zck (A.33)
by taking the expectation and variance of this relation we arrive at

E(c) = 1/L, Cov(ey,cpy) = -V(ck)/(L -1). (A.34)
It follows that

E(Rs) - llz (zz(zchyh))- li Cey) =2 /L =¥ (A.35)

which implies that is is unbiased. The between strata variance component can
be treated in exactly the same way as V(R)B’
we write

= =2
2 Ve T G
2 (A. 36)

i - - CW(C ’ |) — - -
V(R )y h::‘h' 2h “h (¥,-Y, ) -0
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which, after some simplification,

= V() L s (A.37)

k B i
where
2 ﬁﬁ - LY

s B 15~ 1 T (A.38)

Since
2 2 2 2
V(e = E(e) - {E(c)}” = E(c)) - 1/L %, (A.39)

we concentrate on minimizing 2 2
2, _1 2 Loy . 1, Elstay))

E(ck) - X E(ch) = E (—r——)- Tl (TEE?;;TTZ Y P(n. , s, n, ) (A.40)
where the first summation extends over all possible values of Mys eees n and
P(nl, cees ML ) is the probability of getting (nl, sees M ) in a sample of
size n. For any particular value (ni, ciaiols n'L ) with v positive nh values, we
can see, by Cauchy-Schwartz inequality,

L{g(n)) s

zg(ap))?

> (A.41)

< |-

and equality is attained when g(nﬂ) = arbitrary nonzero constant. Without loss
of generality we assume g(nh) = ] for all nhfo which minimize E(c:), i.e. R
minimizes the between stratum component of variance. In fact

V(R = {E(-\]—;) 3 il- }sg (A.42)
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